CRYSTAL STRUCTURE OF DICADMIUM(II) ETHYLENEDIPHOSPHINETETRAACETATE OCTAHYDRATE

Jaroslav Podlaha and Jana Podlahová
Department of Inorganic Chemistry, Charles University, 12840 Prague 2

Received October 29, 1990
Accepted December 12, 1990

Abstract

The crystal structure of the title compound containing a phosphorus analogue of EDTA as the ligand was determined from single-crystal X-ray diffraction data and refined to $R=0.028$ for 1920 observed reflections. The crystals are monoclinic, space group $P 2_{1} / c, a=8.6169(8), b=$ $=16.0539(9), c=8.2504(6) \AA, \beta=103.458(7)^{\circ}$ and $Z=2$. The structure is completely different from that of the nitrogen prototype, $[C d E D T A]^{2-}$. It consists of double-stranded polymeric layers which are composed of metal coordination polyhedra linked by μ_{6}-hexadentate ligands; the layers lie parallel to the $b c$ plane and are joined along the a axis through hydrogen bonding donated by water molecules. Because of steric requirements of phosphorus, the coordination polyhedron around Cd is greatly distorted and can best be described as a $5+3$ type. One \mathbf{P} atom, two oxygen atoms from two monodentate carboxylate groups and two water molecules form an approximate trigonal bipyramid and further three more remote carboxylate oxygens complete the arrangement, resulting in an $\mathrm{O}_{7} \mathrm{P}$ distorted bicapped trigonal prism.

Recent interest in the chemistry of functionalized phosphines is a result mainly of their use as ligands in homogeneous catalysis. The well-known Shell Higher Olefin Process ${ }^{1}$ is an example of industrial catalysis based on carboxyphosphines. Any understanding of the function of these catalysts requires a knowledge of their structure, namely of the ability of potential hard and soft donors to coordinate the particular metal ion. In our laboratory, we have investigated carboxyphosphines with the general formulae $\mathrm{R}_{3-\mathrm{n}} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)_{\mathrm{n}}, \quad n=1-3$, and $\left[-\mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph})_{2-\mathrm{m}}\left(\mathrm{CH}_{2}\right.\right.$. . $\left.\left.\mathrm{CO}_{2} \mathrm{H}\right)_{\mathrm{m}}\right], m=1,2$. The ligand with $m=2$, ethylenediphosphinetetraacetic acid, $\mathrm{H}_{4} \mathrm{~L}$, is a formal analogue of the familiar EDTA. The study of its acid-base equilibria 2, and complex formation in solution ${ }^{3}$ and in the solid state ${ }^{4}$ have demonstrated that the prevailing factor in its coordination behaviour is a strong tendency to behave as a bidentate $\mathrm{P}, \mathrm{P}^{\prime}$-donor towards soft metal ions $\left(\log \beta_{12}>20\right)$ and, in contrast, a negligible tendency $\left(\log \beta_{11}<3\right)$ to bind hard metals such as $\mathrm{Ca}(\mathrm{II})$. From this point of view it appeared interesting to investigate the coordination mode for an ion lying on the borderline between the hard and soft metals. The $\mathrm{Cd}(\mathrm{II})$ ion, for instance, forms the sparingly soluble $\mathrm{Cd}_{2} \mathrm{~L}$ complex ${ }^{3}$ characterized by log $\beta_{21}=10.38$ in solution. The present paper describes a crystallographic study of the related solid, $\mathrm{Cd}_{2} \mathrm{~L} .8 \mathrm{H}_{2} \mathrm{O}$.

EXPERIMENTAL

The compound is formed as a microcrystalline precipitate on mixing neutral or slightly acidic aqueous solutions of the ligand and of a Cd(II) salt in a ratio of $\mathrm{Cd} / \mathrm{L},>0 \cdot 7$ or $0 \cdot 9$ (for pH 4 or 7 respectively). Single crystals were grown at room temperature from a deaerated solution containing $1 \mathrm{mmol} \mathrm{Na} 4 \mathrm{~L}^{\mathrm{L}} \mathrm{H}_{2} \mathrm{O}$ (ref. ${ }^{5}$) and $1 \mathrm{mmol} \mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2}$ in 250 ml of $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ acetate buffer with pH 4.0 . After washing with water and drying in air, the yield of colourless prismatic crystals was 80% based on Cd. For $\mathrm{Cd}_{2} \mathrm{~L} .8 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{Cd}_{2} \mathrm{O}_{16} \mathrm{P}_{2}\right.$ (691-1) calculated: $32.53 \% \mathrm{Cd}, 8.96 \% \mathrm{P}, 20.86 \% \mathrm{H}_{2} \mathrm{O}$; found: $32.5 \% \mathrm{Cd}, 8.87 \% \mathrm{P}$; weight loss at $170^{\circ} \mathrm{C}$ under Ar , 20.9%. IR (Nujol and hexachlorobutadiene mulls) $3500 \mathrm{~m}, 3320 \mathrm{sh}, 3210 \mathrm{bs}, 1640 \mathrm{w}\left(\mathrm{H}_{2} \mathrm{O}\right)$; 1562 vs, 1374 s (OCO). A thermogravimetric curve recorded in air documents stepwise dehydration (two water molecules at $50-60^{\circ} \mathrm{C}$, further four at $70-90^{\circ} \mathrm{C}$ and the last two at $150-155^{\circ} \mathrm{C}$), followed by decomposition of the ligand starting at $310^{\circ} \mathrm{C}$.

The crystallographic data are summarized in Table I. The density was determined by flotation in bromoform-chloroform mixtures. The structure was solved by the heavy atom method and reflined by a full-matrix lest-squares procedure based on F-values ${ }^{6}$. All the hydrogen atoms were located in the difference map. The positional and anisotropic displacement parameters of non-H atoms and positional parameters of O -bonded hydrogen atoms were refined simultaneously, while the C -bonded H atoms were fixed in their theoretical positions. Two different group isotropic displacement parameters, one for C -bonded and another for O -bonded ones, were assigned and refined for H -atoms. Absorption and extinction effects were neglected. Scattering factors were taken from International Tables (1974).

RESULTS AND DISCUSSION

Final fractional coordinates are given in Table II and bond distances and angles in Table III*. Figure 1 shows a perspective view of the $\mathrm{Cd}_{2} \mathrm{~L} .8 \mathrm{H}_{2} \mathrm{O}$ fragment with atom numbering. Crystal packing can be seen in Figs 2 and 3.

The $\mathrm{Cd}_{2} \mathrm{~L} .8 \mathrm{H}_{2} \mathrm{O}$ molecule is centrosymmetric about the centre of the $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}$ fragment. The structure is polymeric and consists of layers arranged parallel to the $b c$ plane and composed of $\mathrm{Cd}(\mathrm{II})$ coordination polyhedra linked by μ_{6}-hexadentate ligand anions and hydrogen bonds.

In contrast to $\mathrm{Cd}(\mathrm{II})$ carboxylates containing only light atoms ${ }^{7}$, the environment of the $\mathrm{Cd}(\mathrm{II})$ ion in the present structure is less clearly defined: it consists of nine potential donor atoms at the distances of 2.230 to $3.698 \AA$ from Cd. The method recommended by Brunner ${ }^{8}$ was applied to define the coordination number. The largest gaps in the ordered series of reciprocal metal-ligand distances lie after eight and then after five neighbours and the coordination polyhedron is therefore best described as a $5+3$ type (Fig. 4). Logically, the closest atoms lying at the metal--ligand distances range of $2 \cdot 230-2 \cdot 547 \AA$ are those that are directly chemically bonded to $\mathrm{Cd}(\mathrm{II})$: two oxygens from the monodentate carboxylate groups ($\mathrm{O} 11^{\mathrm{i}}, \mathrm{O} 21$), one phosphorus ($\left.\mathrm{P}^{\mathrm{i}}\right)$ and two water molecules $(\mathrm{O} 1, \mathrm{O} 2)$; for the symmetry code,

[^0]Table I
Crystal data, measurement and refinement details

Formula	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cd}_{2} \mathrm{O}_{8} \mathrm{P}_{2} .8 \mathrm{H}_{2} \mathrm{O}$
M.w.	$691 \cdot 1$
Space group	$P 2_{1} / \boldsymbol{c}$ (No. 14)
Cell dimensions (\AA, ${ }^{\circ}$)	$a=8.6169(8), b=16.0539(9)$
	$c=8 \cdot 2504(6), \beta=103 \cdot 458(7)$
$V\left(\AA^{3}\right)$	$1110 \cdot 0(1)$
Z	2
$D_{\mathrm{n}}, D_{\mathrm{x}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.044, 2.067
Radiation	$\mathrm{MoK}_{\alpha}, \lambda=0.71073 \AA$
Absorption correction	None, $\mu=2.1 \mathrm{~mm}^{-3}$
$F(000)$	684
Temperature (K)	293
Crystal dimensions (mm)	$0.07 \times 0.15 \times 0.20$
No. of reflections for lattice param. determination	$19\left(17^{\circ}<\theta<24^{\circ}\right)$
Diffractometer	CAD4
Scan mode	$\omega-4 / 3 \theta$
$\sin (\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.62
Standard reflections (variation)	3 after every 2 hours ($<1 \%$)
Interval $h ; k ; l$	-10, 10; 0, 19; - 10, 10
No. of reflections measured	4518
used [$I>1.960 \cdot(I)$]	1920
Residual electron. density	$0.91,-0.70 \mathrm{e}^{\left(\AA^{-3}\right.}$
$(\Delta / \sigma)_{\text {max }}$ for non-H atoms	0.24, -0.25
Function minimized	$\sum w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2}$
Weight	$1 /\left(\sigma^{2}\left(F_{0}\right)+0.0009 F^{2}\right)$
$R, w R, R_{\text {int }}$	$0.028,0.031,0.016$

Formula
M.w.

Space group
Cell dimensions ($\AA,{ }^{\circ}$)
$V\left(\AA^{3}\right)$
Z
$D_{\mathrm{n}}, D_{\mathrm{x}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
Radiation
Absorption correction
$F(000)$
Temperature (K)
Crystal dimensions (mm)
No. of reflections for lattice
param. determination
Diffractometer
Scan mode
$\sin (\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Standard reflections (variation)
Interval $h ; k ; l$
No. of reffections measured
used $[I>1.96 o(I)$]
Residual electron. density
$(\Delta / \sigma)_{\text {max }}$ for non-H atoms
Function minimized
$R, w R, R_{\text {int }}$
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cd}_{2} \mathrm{O}_{8} \mathrm{P}_{2} .8 \mathrm{H}_{2} \mathrm{O}$
$691 \cdot 1$
$P 2_{1} / c$ (No. 14)
$a=8.6169(8), b=16 \cdot 0539(9)$
$c=8 \cdot 2504(6), \beta=103 \cdot 458(7)$
$1110 \cdot 0(1)$
2
2•044, 2•067
$\mathrm{MoK}_{\alpha}, \lambda=0.71073 \AA$
None, $\mu=2.1 \mathrm{~mm}^{-3}$
684
293
$0.07 \times 0.15 \times 0.20$
$19\left(17^{\circ}<\theta<24^{\circ}\right)$

CAD4
$\omega-4 / 3 \theta$
$0 \cdot 62$
$-10,10 ; 0,19 ;-10,10$
4518
1920
$0.91,-0.70$ e \AA^{-3}
$0.24,-0.25$
$\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$
$1 /\left(\sigma^{2}\left(F_{0}\right)+0.0009 F^{2}\right)$
$0.028,0.031,0.016$

Fig. 1
Perspective view of the $\mathrm{Cd}_{2} \mathrm{~L} .8 \mathrm{H}_{2} \mathrm{O}$ fragment with atom numbering

Table II
Fractional coordinates $\left(.10^{4}\right)$ of non-H atoms with e.s.d.'s in parentheses. Symmetry code: $\mathrm{i},-x, y-1 / 2,-z-1 / 2 ; \mathrm{ii}, x, 1 / 2-y, z+1 / 2 ; \mathrm{iii},-x, 1-y,-z ; \mathrm{iv}, x-1,1 / 2-y$, $z-1 / 2 ; \mathrm{v}, x-1, y, z-1 ; \mathrm{vi}, x-1, y, z ; \mathrm{vii},-x, 1-y,-z-1 ; \mathrm{viii},-x, 1 / 2+y,-z-1 / 2$; $\mathrm{ix}, x, 12-y, z-1 / 2, U_{\mathrm{eq}}=1 / 3 \sum_{i} \sum_{j} \mathrm{a}_{\mathrm{i}} \cdot \boldsymbol{a}_{\mathrm{j}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} U_{\mathrm{ij}}$

Atom	x / a	y / b	z / c	$U_{\text {eq }}\left(.10^{3}\right), \AA^{2}$
Cd	$814 \cdot 5(3)$	$1686 \cdot 0(4)$	$1165 \cdot 5(3)$	$28 \cdot 8(4)$
P	$1580(1)$	$4405 \cdot 8(8)$	$-1548(1)$	$22 \cdot 1(4)$
O1	$-1431(4)$	$2278(2)$	$1689(4)$	$47(1)$
O2	$3082(3)$	$1112(2)$	$108(4)$	$37(1)$
O3	$3926(4)$	$5852(3)$	$2748(5)$	$66(1)$
O4	$3944(5)$	$7297(4)$	$811(6)$	$86(2)$
O 11	$630(3)$	$6301(2)$	$-3607(3)$	$36(1)$
O 12	$1758(3)$	$5435(2)$	$-5607(3)$	$40(1)$
O 21	$1327(3)$	$2851(2)$	$-88(4)$	$50(1)$
O 22	$3058(4)$	$2955(2)$	$2298(4)$	$55(1)$
C 10	$-170(4)$	$4744(2)$	$-801(4)$	$30(1)$
C 11	$2551(4)$	$5359(2)$	$-2085(4)$	$28(1)$
C 12	$1603(4)$	$5722(2)$	$-3717(4)$	$27(1)$
C 21	$3043(3)$	$402(2)$	$266(4)$	$27(1)$
C 22	$2442(5)$	$3214(2)$	$892(5)$	$33(1)$

Fig. 2
Projection of the unit cell content onto the $b c \sin \beta$ plane
see Table II. It follows from the values of the shape-determining parameters ${ }^{9}$ that this $\mathrm{O}_{4} \mathrm{P}$ polyhedron can be approximated as a distorted trigonal bipyramid with apical water molecules. The distortion originates mainly from the bulkiness of phosphorus, analogously to other $\mathrm{Cd}(\mathrm{II})$-phosphine complexes ${ }^{10-13}$.

Pentacoordination is, however, completely absent amongst simple Cd (II) carboxylates, where higher coordination numbers dominate, evidently as a result of a more favorable ratio of the atomic radii. In the present structure, the compromise between the large and soft phosphorus and the small and hard oxygens leads to another compromise: the five closest neighbours are supplemented by three more remote carboxylate oxygens ($\mathrm{O} 12^{\mathrm{i}}, \mathrm{O} 22, \mathrm{O} 12^{\mathrm{ii}}$) at the distances of $2 \cdot 814-3 \cdot 109 \AA$, to yield

Table III
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Bonds		Angles	
Cd-O21	2-230(3)	$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 21$	90.4(1)
$\mathrm{Cd}-\mathrm{O} 1$	2-285(3)	$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 21$	83.8(1)
$\mathrm{Cd}-\mathrm{O} 2$	2.494(3)	$\mathrm{P}^{\mathbf{i}}$ - $\mathrm{Cd}-\mathrm{O} 21$	151-1(1)
$\mathbf{C d}-\mathrm{P}^{\mathbf{i i}}$	2.547(1)	$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 21$	85.5(1)
$\mathrm{Cd}-\mathrm{O} 11^{\text {i }}$	2.272(3)	$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 1$	170.6(1)
P-C10	$1 \cdot 839(4)$	$\mathrm{P}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 1$	103.4(1)
P-C11	1.847(3)	$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 1$	89•1(1)
P-C21	1.825(3)	$\mathrm{P}^{\mathbf{i}}-\mathrm{Cd}-\mathrm{O} 2$	85.2(1)
O11-C12	1-269(4)	$\mathrm{O} 11{ }^{\mathrm{i}}$ - $\mathrm{Cd}-\mathrm{O} 2$	83.0(1)
O12-C12	1-241(4)	O11 ${ }^{\text {i }}$ - $\mathrm{Cd}-\mathrm{P}^{\mathbf{i}}$	119.5(1)
$\mathrm{O} 21-\mathrm{C} 22$	1-247(5)	C11-P-C10	106•8(2)
$\mathrm{O} 22-\mathrm{C} 22$	$1 \cdot 230(5)$	C21-P-C10	106•8(2)
$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{iii}}$	1-526(5)	$\mathrm{Cd}^{\mathrm{ix}}-\mathrm{P}-\mathrm{C} 10$	111.1(1)
C11-C12	1-519(5)	C21-P-C11	102.2(2)
C21-C22	1-530(5)	$\mathrm{Cd}^{\mathbf{i x}}-\mathrm{P}-\mathrm{C} 11$	116.5(1)
		$\mathrm{Cd}^{\mathbf{i x}}-\mathrm{P}-\mathrm{C} 21$	112.7(1)
		Cd ${ }^{\text {vii }}-\mathrm{O} 11-\mathrm{Cl2}$	111.2(2)
		$\mathrm{C} 22-\mathrm{O} 21-\mathrm{Cd}$	107.3(2)
		$\mathrm{C} 10^{\mathrm{ii}}$ - $\mathrm{C} 10-\mathrm{P}$	116.2(2)
		C12-C11-P	110.5(2)
		$\mathrm{O} 12-\mathrm{Cl2-O11}$	123.2(3)
		C11-C12-O11	116.5(3)
		$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 12$	120.3(3)
		C22-C21-P	109.8(2)
		$\mathrm{O} 22-\mathrm{C} 22-\mathrm{O} 21$	123.5(3)
		$\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 21$	116.6(3)
		C21-C22-O22	119.9(3)

the geometrical coordination number $5+3$ for Cd . However, none of these three oxygens participates in chemical bonding to Cd . Two of them ($\mathrm{O} 12^{\mathrm{i}}, \mathrm{O} 22$) belong to the carboxylate groups which are already bound to Cd through $\mathbf{O} 11^{\mathrm{i}}$ and $\mathbf{O} 21$ but the differences between the $\mathrm{Cd}-\mathrm{O} 11^{\mathrm{i}}, \mathrm{Cd}-\mathrm{O}_{12}{ }^{\mathbf{i}}$ and $\mathrm{Cd}-\mathrm{O} 21, \mathrm{Cd}-\mathrm{O} 22$ distances are 0.700 and $0.584 \AA$, respectively, thus clearly excluding the possibility of chelate bonding ${ }^{7}$. As expected, the eight-coordination polyhedron around $\mathbf{C d}$ is greatly distorted and its exact classification is therefore difficult if not impossible, since small changes in the distances and/or angles can easily lead to interconversion between the energetically close idealized polyhedra of this order ${ }^{9}$. Inspection of the shape-determining parameters indicate that the $\mathrm{O}_{7} \mathrm{P}$ polyhedron resembles a bicapped trigonal prism with P^{ii} and O 21 atoms as the caps covering two trapezoidal faces.

The ligand anion, L^{4-}, makes use of all its six donor atoms for coordination but, in sharp contrast to EDTA (ref. ${ }^{14}$), to six different $\mathrm{Cd}(\mathrm{II})$ ions. Such a type of

Fig. 3
Linking of the $\mathrm{CdO}_{4} \mathrm{P}$ polyhedrons by hydrogen bonds

Fig. 5
Hydrogen bonding scheme

Fig. 4
Coordination polyhedron around Cd

[^1]bridging is uncommon amongst ligands with high denticity. It has, however, an analogue in a series of phosphinecarboxylates: zinc(II)phosphinidynetripropionate ${ }^{15}$ does contain μ_{4}-tetradentate ligands. The μ_{6}-bonding requires, of course, the ligand backbone be highly flexible. Comparison of the conformations which are adopted by the ligand in its hitherto structurally characterized derivatives ${ }^{2,16}$ demonstrates that essentially unhidered rotation can occur around all its bonds. Consequently, individual ligand arrangements in these structures do not provide sufficient information for generalization. On the other hand, the local geometry of the donor groups of the ligand is quite normal, corresponding to a distorted tetrahedron at phosphorus and a nearly perfect syn-conformation of both carboxylate groups, characterized by torsional angles of $-2 \cdot 1^{\circ}$ and $2 \cdot 3^{\circ}$ for $\mathrm{C} 1-\mathrm{O} 21-\mathrm{C} 22-\mathrm{O} 22$ and $\mathrm{Cd}-\mathrm{O} 11^{\mathrm{i}}$ $-\mathrm{C} 12^{\mathrm{i}}-\mathrm{O} 12^{\mathrm{i}}$, respectively.

The asymmetric unit contains four water molecules which are of three various types with respect to the coordination to Cd and/or the number of hydrogen bonds in which they participate: O1, O2 and O3 + O4 (Fig. 5). From the eight hydrogen bonds which are present in the structure, five operate within the layers and three link the layers in the a-direction. It is noteworthy that the $1+1+2$ discrimination of the types of water molecules is reflected in the IR spectrum and, in particular, in the stepwise dehydration which could well proceed in the order $\mathrm{O} 1, \mathrm{O} 3+\mathrm{O} 4, \mathrm{O} 2$ with increasing temperature.

REFERENCES

1. Masters C.: Homogeneous Transition Metal Catalysis - A Gentle Art, p. 216. Chapman and Hall, London 1981.
2. Podlahová J., Kratochvil B., Langer V., Silha J., Podlaha J.: Collect. Czech. Chem. Commun. 46, 3063 (1981).
3. Podlahová J., Podlaha J.: Collect. Czech. Chem. Commun. 47, 1078 (1982).
4. Podlahová J., Kavan L., Silha J., Podlaha J.: Polyhedron 3, 963 (1983).
5. Podlahová J., Podlaha J.: Collect. Czech. Chem. Commun. 45, 2049 (1980).
6. Sheldrick G. M.: SHELX-76. Program for Crystal Structure Determination. University of Cambridge, England 1976.
7. Podlaha J., Podlahová J.: Unpublished results.
8. Brunner G. O.: Acta Crystallogr., A 33, 226 (1977).
9. Muetterties E. L., Guggenberger L. J.: J. Am. Chem. Soc. 96, 1748 (1974).
10. Bell N. A., Dee T. D., Goldstein M., Nowell I. W.: Inorg. Chim. Acta 38, 191 (1980).
11. Goel R. G., Henry W. P., Olivier M. J., Beauchamp A. L.: Inorg. Chem. 20, 3924 (1981).
12. Houk L. W., Gupta P. K. S., Hossain M. B., van der Helm D.: Acta Crystallogr., B 38, 91 (1982).
13. Bell N. A., Dee T. D., Goldstein M., Nowell I. W.: Inorg. Chim. Acta 65, L87 (1982).
14. Silans X., Gali S., Font-Altaba M., Oliva J., Herrera J.: Acta Crystallogr., C 39, 438 (1983).
15. Podlahová J., Kratochvil B., Podlaha J., Hašek J.: J. Chem. Soc., Dalton Trans. 1985, 2393.
16. Podlahová J., Kratochvíl B., Langer V., Podlaha J.: Polyhedron 5, 799 (1986).

Translated by the author (Jaroslav P.).

[^0]: * Supplementary material comprising the anisotropic displacement parameters, hydrogen atom coordinates and structure factor tables is available from the authors upon request.

[^1]: Collect. Czech. Chem. Commun. (Vol. 56) (1991)

